Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51.034
Filtrar
1.
Front Immunol ; 15: 1335651, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566998

RESUMO

Regulatory T cells (Tregs) residing in visceral adipose tissue (VAT) play a pivotal role in regulating tissue inflammation and metabolic dysfunction associated with obesity. However, the specific phenotypic and functional characteristics of Tregs in obese VAT, as well as the regulatory mechanisms shaping them, remain elusive. This study demonstrates that obesity selectively reduces Tregs in VAT, characterized by restrained proliferation, heightened PD-1 expression, and diminished ST2 expression. Additionally, obese VAT displays distinctive maturation of dendritic cells (DCs), marked by elevated expressions of MHC-II, CD86, and PD-L1, which are inversely correlated with VAT Tregs. In an in vitro co-culture experiment, only obese VAT DCs, not macrophages or DCs from subcutaneous adipose tissue (SAT) and spleen, result in decreased Treg differentiation and proliferation. Furthermore, Tregs differentiated by obese VAT DCs exhibit distinct characteristics resembling those of Tregs in obese VAT, such as reduced ST2 and IL-10 expression. Mechanistically, obesity lowers IL-33 production in VAT DCs, contributing to the diminished Treg differentiation. These findings collectively underscore the critical role of VAT DCs in modulating Treg generation and shaping Treg phenotype and function during obesity, potentially contributing to the regulation of VAT Treg populations.


Assuntos
Interleucina-33 , Linfócitos T Reguladores , Humanos , Linfócitos T Reguladores/metabolismo , Interleucina-33/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Obesidade/metabolismo , Células Dendríticas/metabolismo
2.
J Immunother Cancer ; 12(4)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580332

RESUMO

BACKGROUND: Regulatory T (Treg) cells are a key component in maintaining the suppressive tumor microenvironment and immune suppression in different types of cancers. A precise understanding of the molecular mechanisms used by Treg cells for immune suppression is critical for the development of effective strategies for cancer immunotherapy. METHODS: Senescence development and tolerogenic functions of dendritic cells (DCs) induced by breast cancer tumor-derived γδ Treg cells were fully characterized using real-time PCR, flow cytometry, western blot, and functional assays. Loss-of-function strategies with pharmacological inhibitor and/or neutralizing antibody were used to identify the potential molecule(s) and pathway(s) involved in DC senescence and dysfunction induced by Treg cells. Impaired tumor antigen HER2-specific recognition and immune response of senescent DCs induced by γδ Treg cells were explored in vitro and in vivo in humanized mouse models. In addition, the DC-based HER2 tumor vaccine immunotherapy in breast cancer models was performed to explore the enhanced antitumor immunity via prevention of DC senescence through blockages of STAT3 and programmed death-ligand 1 (PD-L1) signaling. RESULTS: We showed that tumor-derived γδ Treg cells promote the development of senescence in DCs with tolerogenic functions in breast cancer. Senescent DCs induced by γδ Treg cells suppress Th1 and Th17 cell differentiation but promote the development of Treg cells. In addition, we demonstrated that PD-L1 and STAT3 signaling pathways are critical and involved in senescence induction in DCs mediated by tumor-derived γδ Treg cells. Importantly, our complementary in vivo studies further demonstrated that blockages of PD-L1 and/or STAT3 signaling can prevent γδ Treg-induced senescence and reverse tolerogenic functions in DCs, resulting in enhanced HER2 tumor-specific immune responses and immunotherapy efficacy in human breast cancer models. CONCLUSIONS: These studies not only dissect the suppressive mechanism mediated by tumor-derived γδ Treg cells on DCs in the tumor microenvironment but also provide novel strategies to prevent senescence and dysfunction in DCs and enhance antitumor efficacy mediated by tumor-specific T cells for cancer immunotherapy.


Assuntos
Neoplasias da Mama , Linfócitos T Reguladores , Camundongos , Animais , Humanos , Feminino , Antígeno B7-H1/metabolismo , Imunoterapia , Ativação Linfocitária , Células Dendríticas , Microambiente Tumoral
3.
J Immunother Cancer ; 12(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38580330

RESUMO

BACKGROUND: Initiation of antitumor immunity is reliant on the stimulation of dendritic cells (DCs) to present tumor antigens to naïve T cells and generate effector T cells that can kill cancer cells. Induction of immunogenic cell death after certain types of cytotoxic anticancer therapies can stimulate T cell-mediated immunity. However, cytotoxic therapies simultaneously activate multiple types of cellular stress and programmed cell death; hence, it remains unknown what types of cancer cell death confer superior antitumor immunity. METHODS: Murine cancer cells were engineered to activate apoptotic or pyroptotic cell death after Dox-induced expression of procell death proteins. Cell-free supernatants were collected to measure secreted danger signals, cytokines, and chemokines. Tumors were formed by transplanting engineered tumor cells to specifically activate apoptosis or pyroptosis in established tumors and the magnitude of immune response measured by flow cytometry. Tumor growth was measured using calipers to estimate end point tumor volumes for Kaplan-Meier survival analysis. RESULTS: We demonstrated that, unlike apoptosis, pyroptosis induces an immunostimulatory secretome signature. In established tumors pyroptosis preferentially activated CD103+ and XCR1+ type I conventional DCs (cDC1) along with a higher magnitude and functionality of tumor-specific CD8+ T cells and reduced number of regulatory T cells within the tumor. Depletion of cDC1 or CD4+ and CD8+ T cells ablated the antitumor response leaving mice susceptible to a tumor rechallenge. CONCLUSION: Our study highlights that distinct types of cell death yield varying immunotherapeutic effect and selective activation of pyroptosis can be used to potentiate multiple aspects of the anticancer immunity cycle.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Camundongos , Animais , Piroptose , Células Dendríticas , Citocinas/metabolismo
4.
Eur J Med Res ; 29(1): 221, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581008

RESUMO

BACKGROUND: Fibronectin type III domain containing 3B (FNDC3B), a member of the fibronectin type III domain-containing protein family, has been indicated in various malignancies. However, the precise role of FNDC3B in the progression of pancreatic cancer (PC) still remains to be elucidated. METHODS: In this study, we integrated data from the National Center for Biotechnology Information, the Cancer Genome Atlas, Genotype-Tissue Expression database, and Gene Expression Omnibus datasets to analyze FNDC3B expression and its association with various clinicopathological parameters. Subsequently, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, along with Gene Set Enrichment Analysis (GSEA), single sample Gene Set Enrichment Analysis (ssGSEA) and estimate analysis were recruited to delve into the biological function and immune infiltration based on FNDC3B expression. Additionally, the prognostic estimation was conducted using Cox analysis and Kaplan-Meier analysis. Subsequently, a nomogram was constructed according to the result of Cox analysis to enhance the prognostic ability of FNDC3B. Finally, the preliminary biological function of FNDC3B in PC cells was explored. RESULTS: The study demonstrated a significantly higher expression of FNDC3B in tumor tissues compared to normal pancreatic tissues, and this expression was significantly associated with various clinicopathological parameters. GSEA revealed the involvement of FNDC3B in biological processes and signaling pathways related to integrin signaling pathway and cell adhesion. Additionally, ssGSEA analysis indicated a positive correlation between FNDC3B expression and infiltration of Th2 cells and neutrophils, while showing a negative correlation with plasmacytoid dendritic cells and Th17 cells infiltration. Kaplan-Meier analysis further supported that high FNDC3B expression in PC patients was linked to shorter overall survival, disease-specific survival, and progression-free interval. However, although univariate analysis demonstrated a significant correlation between FNDC3B expression and prognosis in PC patients, this association did not hold true in multivariate analysis. Finally, our findings highlight the crucial role of FNDC3B expression in regulating proliferation, migration, and invasion abilities of PC cells. CONCLUSION: Despite limitations, the findings of this study underscored the potential of FNDC3B as a prognostic biomarker and its pivotal role in driving the progression of PC, particularly in orchestrating immune responses.


Assuntos
Domínio de Fibronectina Tipo III , Neoplasias Pancreáticas , Humanos , Células Dendríticas , Nomogramas , Neoplasias Pancreáticas/genética , Prognóstico
5.
Genome Med ; 16(1): 51, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566128

RESUMO

BACKGROUND: A major contributing factor to glioblastoma (GBM) development and progression is its ability to evade the immune system by creating an immune-suppressive environment, where GBM-associated myeloid cells, including resident microglia and peripheral monocyte-derived macrophages, play critical pro-tumoral roles. However, it is unclear whether recruited myeloid cells are phenotypically and functionally identical in GBM patients and whether this heterogeneity is recapitulated in patient-derived orthotopic xenografts (PDOXs). A thorough understanding of the GBM ecosystem and its recapitulation in preclinical models is currently missing, leading to inaccurate results and failures of clinical trials. METHODS: Here, we report systematic characterization of the tumor microenvironment (TME) in GBM PDOXs and patient tumors at the single-cell and spatial levels. We applied single-cell RNA sequencing, spatial transcriptomics, multicolor flow cytometry, immunohistochemistry, and functional studies to examine the heterogeneous TME instructed by GBM cells. GBM PDOXs representing different tumor phenotypes were compared to glioma mouse GL261 syngeneic model and patient tumors. RESULTS: We show that GBM tumor cells reciprocally interact with host cells to create a GBM patient-specific TME in PDOXs. We detected the most prominent transcriptomic adaptations in myeloid cells, with brain-resident microglia representing the main population in the cellular tumor, while peripheral-derived myeloid cells infiltrated the brain at sites of blood-brain barrier disruption. More specifically, we show that GBM-educated microglia undergo transition to diverse phenotypic states across distinct GBM landscapes and tumor niches. GBM-educated microglia subsets display phagocytic and dendritic cell-like gene expression programs. Additionally, we found novel microglial states expressing cell cycle programs, astrocytic or endothelial markers. Lastly, we show that temozolomide treatment leads to transcriptomic plasticity and altered crosstalk between GBM tumor cells and adjacent TME components. CONCLUSIONS: Our data provide novel insights into the phenotypic adaptation of the heterogeneous TME instructed by GBM tumors. We show the key role of microglial phenotypic states in supporting GBM tumor growth and response to treatment. Our data place PDOXs as relevant models to assess the functionality of the TME and changes in the GBM ecosystem upon treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Camundongos , Animais , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Microglia/metabolismo , Ecossistema , Xenoenxertos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Fenótipo , Modelos Animais de Doenças , Células Dendríticas/metabolismo , Microambiente Tumoral/genética
6.
Science ; 384(6692): 159-160, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38574173

RESUMO

Androgen signaling skews skin immunity toward reduced inflammation in male mice.


Assuntos
Androgênios , Caracteres Sexuais , Masculino , Feminino , Camundongos , Animais , Imunidade Inata , Linfócitos , Células Dendríticas
7.
Front Immunol ; 15: 1374763, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596682

RESUMO

Background: Psoriasis is an immune-mediated disorder influenced by environmental factors on a genetic basis. Despite advancements, challenges persist, including the diminishing efficacy of biologics and small-molecule targeted agents, alongside managing recurrence and psoriasis-related comorbidities. Unraveling the underlying pathogenesis and identifying valuable biomarkers remain pivotal for diagnosing and treating psoriasis. Methods: We employed a series of bioinformatics (including single-cell sequencing data analysis and machine learning techniques) and statistical methods to integrate and analyze multi-level data. We observed the cellular changes in psoriatic skin tissues, screened the key genes Fatty acid binding protein 5 (FABP5) and The killer cell lectin-like receptor B1 (KLRB1), evaluated the efficacy of six widely prescribed drugs on psoriasis treatment in modulating the dendritic cell-associated pathway, and assessed their overall efficacy. Finally, RT-qPCR, immunohistochemistry, and immunofluorescence assays were used to validate. Results: The regulatory influence of dendritic cells (DCs) on T cells through the CD70/CD27 signaling pathway may emerge as a significant facet of the inflammatory response in psoriasis. Notably, FABP5 and KLRB1 exhibited up-regulation and co-localization in psoriatic skin tissues and M5-induced HaCaT cells, serving as potential biomarkers influencing psoriasis development. Conclusion: Our study analyzed the impact of DC-T cell crosstalk in psoriasis, elucidated the characterization of two biomarkers, FABP5 and KLRB1, in psoriasis, and highlighted the promise and value of tofacitinib in psoriasis therapy targeting DCs.


Assuntos
Psoríase , Humanos , Psoríase/tratamento farmacológico , Pele/patologia , Queratinócitos/metabolismo , Biomarcadores/metabolismo , Células Dendríticas/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo
8.
Sci Immunol ; 9(94): eadi1023, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608038

RESUMO

The development of dendritic cells (DCs), including antigen-presenting conventional DCs (cDCs) and cytokine-producing plasmacytoid DCs (pDCs), is controlled by the growth factor Flt3 ligand (Flt3L) and its receptor Flt3. We genetically dissected Flt3L-driven DC differentiation using CRISPR-Cas9-based screening. Genome-wide screening identified multiple regulators of DC differentiation including subunits of TSC and GATOR1 complexes, which restricted progenitor growth but enabled DC differentiation by inhibiting mTOR signaling. An orthogonal screen identified the transcriptional repressor Trim33 (TIF-1γ) as a regulator of DC differentiation. Conditional targeting in vivo revealed an essential role of Trim33 in the development of all DCs, but not of monocytes or granulocytes. In particular, deletion of Trim33 caused rapid loss of DC progenitors, pDCs, and the cross-presenting cDC1 subset. Trim33-deficient Flt3+ progenitors up-regulated pro-inflammatory and macrophage-specific genes but failed to induce the DC differentiation program. Collectively, these data elucidate mechanisms that control Flt3L-driven differentiation of the entire DC lineage and identify Trim33 as its essential regulator.


Assuntos
Coreia , Diferenciação Celular , Citocinas , Células Dendríticas
9.
Methods Mol Biol ; 2782: 123-136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38622397

RESUMO

The role of immune system in the progression of neurodegenerative diseases has been studied for decades in animal models. However, invasive studies in human subjects remain controversial due to the heterogeneity of the presentation of different diagnostic categories at different stages of the disease. Peripheral blood mononuclear cells (PBMCs) contain immune cells including dendritic cells (DCs), monocytes, macrophages, and T lymphocytes. Isolating PBMCs from whole blood samples collected from patients provides a minimally invasive method for analyzing the immune system's function in patients with neurodegenerative diseases. By isolating single cell types from patients' peripheral blood, in vitro analyses can be conducted including RNA sequencing, immunofluorescence, and phagocytic analysis. In this chapter, we discuss PBMC separation and isolation of macrophages in pure culture in vitro. We also outline methods for performing RNA-seq on cultured macrophages and other techniques for investigating the role of macrophages in neurodegenerative disease pathophysiology.


Assuntos
Leucócitos Mononucleares , Doenças Neurodegenerativas , Animais , Humanos , Leucócitos Mononucleares/metabolismo , Doenças Neurodegenerativas/metabolismo , Células Dendríticas , Monócitos , Macrófagos/metabolismo
10.
Vaccine ; 42(12): 3075-3083, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38584060

RESUMO

As the major outer membrane protein (OMP) presents in the Pasteurella multocida envelope, OmpH was frequently expressed for laboratory assessments of its immunogenicity against P. multocida infections, but the results are not good. In this study, we modified OmpH with dendritic cell targeting peptide (Depeps) and/or Salmonella FliCd flagellin, and expressed three types of recombinant proteins with the MBP tag (rDepeps-FliC-OmpH-MBP, rDepeps-OmpH-MBP, rFliC-OmpH-MBP). Assessments in mouse models revealed that vaccination with rDepeps-FliC-OmpH-MBP, rDepeps-OmpH-MBP, or rFliC-OmpH-MBP induced significant higher level of antibodies as well as IFN-γ and IL-4 in murine sera than vaccination with rOmpH-MBP (P < 0.5). Vaccination with the three modified proteins also provided increased protection (rDepeps-FliC-OmpH-MBP, 70 %; rDepeps-OmpH-MBP, 50 %; rFliC-OmpH-MBP, 60 %) against P. multocida serotype D compared to vaccination with rOmpH-MBP (30 %). In mice vaccinated with different types of modified OmpHs, a significantly decreased bacterial strains were recovered from bloods, lungs, and spleens compared to rOmpH-MBP-vaccinated mice (P < 0.5). Notably, our assessments also demonstrated that vaccination with rDepeps-FliC-OmpH-MBP provided good protection against infections caused by a heterogeneous group of P. multocida serotypes (A, B, D). Our above findings indicate that modification with DCpep and Salmonella flagellin could be used as a promising strategy to improve vaccine effectiveness.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Animais , Camundongos , Sorogrupo , Infecções por Pasteurella/prevenção & controle , Flagelina/metabolismo , Proteínas da Membrana Bacteriana Externa , Peptídeos/metabolismo , Células Dendríticas , Vacinas Bacterianas
11.
Med Oncol ; 41(5): 107, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580762

RESUMO

Diospyros peregrina is a dioecious plant which is native to India. It belongs to the family of Ebenaceae and is extensively used to treat various ailments, such as leucorrhoea and other uterine-related problems. Though few studies have been on D. peregrina for their anti-tumour response, little is known. Therefore, this intrigued us to understand its immunomodulator capabilities on various types of cancer extensively. Our primary focus is on NSCLC (Non-Small Cell Lung Cancer), which is ranked as the second largest form of cancer in the world, and the treatments demand non-invasive agents to target NSCLC effectively. In an objective to generate an efficient Lung Cancer Associated Antigen (LCA) specific anti-tumour immune response, LCA was presented using dendritic cells (DCs) in the presence of D. peregrina fruit preparation (DFP). Moreover, we also investigated DFP's role in the differentiation of T-helper (TH) cells. Therefore, this study aimed at better LCA presentation mediated by DFP by activating the LCA pulsed DCs and T helper cell differentiation for better immune response. DCs were pulsed with LCA for tumour antigen presentation in vitro, with and without DFP. Differentially pulsed DCs were irradiated to co-culture with autologous and allogeneic lymphocytes. Extracellular supernatants were collected for the estimation of cytokine levels by ELISA. LDH release assay was performed to test Cytotoxic T lymphocytes (CTLs) mediated lung tumour cell cytotoxicity. Thus, DFP may be a potential vaccine to generate anti-LCA immune responses to restrict NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Diospyros , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Apresentação de Antígeno , Frutas , Células Dendríticas , Linfócitos T Citotóxicos , Diferenciação Celular
12.
Biomed Environ Sci ; 37(3): 303-314, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38582994

RESUMO

Objective: This study aimed to evaluate whether the onset of the plateau phase of slow hepatitis B surface antigen decline in patients with chronic hepatitis B treated with intermittent interferon therapy is related to the frequency of dendritic cell subsets and expression of the costimulatory molecules CD40, CD80, CD83, and CD86. Method: This was a cross-sectional study in which patients were divided into a natural history group (namely NH group), a long-term oral nucleoside analogs treatment group (namely NA group), and a plateau-arriving group (namely P group). The percentage of plasmacytoid dendritic cell and myeloid dendritic cell subsets in peripheral blood lymphocytes and monocytes and the mean fluorescence intensity of their surface costimulatory molecules were detected using a flow cytometer. Results: In total, 143 patients were enrolled (NH group, n = 49; NA group, n = 47; P group, n = 47). The results demonstrated that CD141/CD1c double negative myeloid dendritic cell (DNmDC)/lymphocytes and monocytes (%) in P group (0.041 [0.024, 0.069]) was significantly lower than that in NH group (0.270 [0.135, 0.407]) and NA group (0.273 [0.150, 0.443]), and CD86 mean fluorescence intensity of DNmDCs in P group (1832.0 [1484.0, 2793.0]) was significantly lower than that in NH group (4316.0 [2958.0, 5169.0]) and NA group (3299.0 [2534.0, 4371.0]), Adjusted P all < 0.001. Conclusion: Reduced DNmDCs and impaired maturation may be associated with the onset of the plateau phase during intermittent interferon therapy in patients with chronic hepatitis B.


Assuntos
Hepatite B Crônica , Humanos , Hepatite B Crônica/tratamento farmacológico , Estudos Transversais , Citometria de Fluxo , Células Dendríticas , Interferons/metabolismo
13.
Immunity ; 57(4): 632-648, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599163

RESUMO

One of the most significant conceptual advances in immunology in recent history is the recognition that signals from the innate immune system are required for induction of adaptive immune responses. Two breakthroughs were critical in establishing this paradigm: the identification of dendritic cells (DCs) as the cellular link between innate and adaptive immunity and the discovery of pattern recognition receptors (PRRs) as a molecular link that controls innate immune activation as well as DC function. Here, we recount the key events leading to these discoveries and discuss our current understanding of how PRRs shape adaptive immune responses, both indirectly through control of DC function and directly through control of lymphocyte function. In this context, we provide a conceptual framework for how variation in the signals generated by PRR activation, in DCs or other cell types, can influence T cell differentiation and shape the ensuing adaptive immune response.


Assuntos
Células Dendríticas , Imunidade Inata , Imunidade Adaptativa , Receptores de Reconhecimento de Padrão/metabolismo , Ativação Linfocitária
14.
Front Immunol ; 15: 1369117, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601165

RESUMO

There is an urgent need for alternative therapies targeting human dendritic cells (DCs) that could reverse inflammatory syndromes in many autoimmune and inflammatory diseases and organ transplantations. Here, we describe a bispecific antibody (bsAb) strategy tethering two pathogen-recognition receptors at the surface of human DCs. This cross-linking switches DCs into a tolerant profile able to induce regulatory T-cell differentiation. The bsAbs, not parental Abs, induced interleukin 10 and transforming growth factor ß1 secretion in monocyte-derived DCs and human peripheral blood mononuclear cells. In addition, they induced interleukin 10 secretion by synovial fluid cells in rheumatoid arthritis and gout patients. This concept of bsAb-induced tethering of surface pathogen-recognition receptors switching cell properties opens a new therapeutic avenue for controlling inflammation and restoring immune tolerance.


Assuntos
Anticorpos Biespecíficos , Linfócitos T Reguladores , Humanos , Interleucina-10/metabolismo , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/metabolismo , Leucócitos Mononucleares , Células Dendríticas
15.
J Immunother Cancer ; 12(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38604809

RESUMO

BACKGROUND: Combining cytotoxic chemotherapy or novel anticancer drugs with T-cell modulators holds great promise in treating advanced cancers. However, the response varies depending on the tumor immune microenvironment (TIME). Therefore, there is a clear need for pharmacologically tractable models of the TIME to dissect its influence on mono- and combination treatment response at the individual level. METHODS: Here we establish a patient-derived explant culture (PDEC) model of breast cancer, which retains the immune contexture of the primary tumor, recapitulating cytokine profiles and CD8+T cell cytotoxic activity. RESULTS: We explored the immunomodulatory action of a synthetic lethal BCL2 inhibitor venetoclax+metformin drug combination ex vivo, discovering metformin cannot overcome the lymphocyte-depleting action of venetoclax. Instead, metformin promotes dendritic cell maturation through inhibition of mitochondrial complex I, increasing their capacity to co-stimulate CD4+T cells and thus facilitating antitumor immunity. CONCLUSIONS: Our results establish PDECs as a feasible model to identify immunomodulatory functions of anticancer drugs in the context of patient-specific TIME.


Assuntos
Antineoplásicos , Neoplasias da Mama , Compostos Bicíclicos Heterocíclicos com Pontes , Metformina , Sulfonamidas , Humanos , Feminino , Complexo I de Transporte de Elétrons/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Células Dendríticas , Metformina/farmacologia , Metformina/uso terapêutico , Microambiente Tumoral
16.
Front Immunol ; 15: 1335975, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605963

RESUMO

Lactic acid bacteria (LAB) possess the ability to argument T cell activity through functional modification of antigen presenting cells (APCs), such as dendritic cells (DCs) and macrophages. Nevertheless, the precise mechanism underlying LAB-induced enhancement of antigen presentation in APCs remains incompletely understood. To address this question, we investigated the detailed mechanism underlying the enhancement of major histocompatibility complex (MHC) class I-restricted antigen presentation in DCs using a probiotic strain known as Lactococcus lactis subsp. Cremoris C60. We found that Heat-killed-C60 (HK-C60) facilitated the processing and presentation of ovalbumin (OVA) peptide antigen OVA257-264 (SIINFEKL) via H-2Kb in bone marrow-derived dendritic cells (BMDCs), leading to increased generation of effector CD8+ T cells both in vitro and in vivo. We also revealed that HK-C60 stimulation augmented the activity of 20S immunoproteasome (20SI) in BMDCs, thereby enhancing the MHC class I-restricted antigen presentation machinery. Furthermore, we assessed the impact of HK-C60 on CD8+ T cell activation in an OVA-expressing B16-F10 murine melanoma model. Oral administration of HK-C60 significantly attenuated tumor growth compared to control treatment. Enhanced Ag processing and presentation machineries in DCs from both Peyer's Patches (PPs) and lymph nodes (LNs) resulted in an increased tumor antigen specific CD8+ T cells. These findings shed new light on the role of LAB in MHC class-I restricted antigen presentation and activation of CD8+ T cells through functional modification of DCs.


Assuntos
Apresentação de Antígeno , Células Dendríticas , Animais , Camundongos , Antígenos de Histocompatibilidade Classe I , Linfócitos T CD8-Positivos , Antígenos , Ovalbumina , Complexo Principal de Histocompatibilidade
17.
J Immunol Res ; 2024: 7827246, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628676

RESUMO

Dendritic cells (DCs) are specialized antigen-presenting cells that are crucial for maintaining self-tolerance, initiating immune responses against pathogens, and patrolling body compartments. Despite promising aspects, DC-based immunotherapy faces challenges that include limited availability, immune escape in tumors, immunosuppression in the tumor microenvironment, and the need for effective combination therapies. A further limitation in DC-based immunotherapy is the low population of migratory DC (around 5%-10%) that migrate to lymph nodes (LNs) through afferent lymphatics depending on the LN draining site. By increasing the population of migratory DCs, DC-based immunotherapy could enhance immunotherapeutic effects on target diseases. This paper reviews the importance of DC migration and current research progress in the context of DC-based immunotherapy.


Assuntos
Células Dendríticas , Neoplasias , Humanos , Imunoterapia , Linfonodos , Neoplasias/terapia , Movimento Celular , Microambiente Tumoral
18.
Nature ; 628(8009): 854-862, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570678

RESUMO

The intestinal immune system is highly adapted to maintaining tolerance to the commensal microbiota and self-antigens while defending against invading pathogens1,2. Recognizing how the diverse network of local cells establish homeostasis and maintains it in the complex immune environment of the gut is critical to understanding how tolerance can be re-established following dysfunction, such as in inflammatory disorders. Although cell and molecular interactions that control T regulatory (Treg) cell development and function have been identified3,4, less is known about the cellular neighbourhoods and spatial compartmentalization that shapes microorganism-reactive Treg cell function. Here we used in vivo live imaging, photo-activation-guided single-cell RNA sequencing5-7 and spatial transcriptomics to follow the natural history of T cells that are reactive towards Helicobacter hepaticus through space and time in the settings of tolerance and inflammation. Although antigen stimulation can occur anywhere in the tissue, the lamina propria-but not embedded lymphoid aggregates-is the key microniche that supports effector Treg (eTreg) cell function. eTreg cells are stable once their niche is established; however, unleashing inflammation breaks down compartmentalization, leading to dominance of CD103+SIRPα+ dendritic cells in the lamina propria. We identify and validate the putative tolerogenic interaction between CD206+ macrophages and eTreg cells in the lamina propria and identify receptor-ligand pairs that are likely to govern the interaction. Our results reveal a spatial mechanism of tolerance in the lamina propria and demonstrate how knowledge of local interactions may contribute to the next generation of tolerance-inducing therapies.


Assuntos
Helicobacter hepaticus , Tolerância Imunológica , Cadeias alfa de Integrinas , Análise de Célula Única , Linfócitos T Reguladores , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/citologia , Animais , Camundongos , Cadeias alfa de Integrinas/metabolismo , Helicobacter hepaticus/imunologia , Tolerância Imunológica/imunologia , Feminino , Masculino , Antígenos CD/metabolismo , Receptores Imunológicos/metabolismo , Receptores Imunológicos/imunologia , Inflamação/imunologia , Inflamação/patologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/citologia , Intestinos/imunologia , Intestinos/citologia , Camundongos Endogâmicos C57BL , RNA-Seq , Transcriptoma , Infecções por Helicobacter/imunologia , Infecções por Helicobacter/microbiologia , Células Dendríticas/imunologia
19.
Science ; 384(6692): eadk6200, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38574174

RESUMO

Males and females exhibit profound differences in immune responses and disease susceptibility. However, the factors responsible for sex differences in tissue immunity remain poorly understood. Here, we uncovered a dominant role for type 2 innate lymphoid cells (ILC2s) in shaping sexual immune dimorphism within the skin. Mechanistically, negative regulation of ILC2s by androgens leads to a reduction in dendritic cell accumulation and activation in males, along with reduced tissue immunity. Collectively, our results reveal a role for the androgen-ILC2-dendritic cell axis in controlling sexual immune dimorphism. Moreover, this work proposes that tissue immune set points are defined by the dual action of sex hormones and the microbiota, with sex hormones controlling the strength of local immunity and microbiota calibrating its tone.


Assuntos
Androgênios , Células Dendríticas , Imunidade Inata , Linfócitos , Caracteres Sexuais , Pele , Feminino , Masculino , Androgênios/metabolismo , Células Dendríticas/imunologia , Hormônios Esteroides Gonadais/metabolismo , Linfócitos/imunologia , Pele/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Microbiota
20.
J Immunol ; 212(9): 1397-1405, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621195

RESUMO

The advent of immune checkpoint blockade therapy has revolutionized cancer treatments and is partly responsible for the significant decline in cancer-related mortality observed during the last decade. Immune checkpoint inhibitors, such as anti-programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1), have demonstrated remarkable clinical successes in a subset of cancer patients. However, a considerable proportion of patients remain refractory to immune checkpoint blockade, prompting the exploration of mechanisms of treatment resistance. Whereas much emphasis has been placed on the role of PD-L1 and PD-1 in regulating the activity of tumor-infiltrating T cells, recent studies have now shown that this immunoregulatory axis also directly regulates myeloid cell activity in the tumor microenvironment including tumor-infiltrating dendritic cells. In this review, I discuss the most recent advances in the understanding of how PD-1, PD-L1, and programmed cell death ligand 2 regulate the function of tumor-infiltrating dendritic cells, emphasizing the need for further mechanistic studies that could facilitate the development of novel combination immunotherapies for improved cancer patient benefit.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico , Receptor de Morte Celular Programada 1/metabolismo , Ligantes , Apoptose , Células Dendríticas/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...